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In this paper, a comparative dynamic analysis of the portal cranes of type H and X is
described. The difference of the considered cranes arises from the difference of their portals.
These two types of portals have the same main geometric measurements. They differ only
at the medium level in the horizontal plane. The first type of the portal on the middle level
has an H-frame, while the second type has an X-frame. In this paper, dynamic parameters
of the two portals have been compared. Estimation has been done to find which of the two
types of portals has more favourable dynamic stability for overturn.
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1. Introduction

Portal-slewing cranes are very important from the aspect of realization of logistics processes.
They are transport machinery with a boom which is connected to the portal and which has the
possibility of 360◦ slewing. The widest application has two types of the portal-slewing cranes:
type H and type X.
The last 50 years has seen keen interest in study on the dynamic of cranes (Abdel-Rahman

et al., 2003). Dynamics of structures of the transport machinery is a fundamental topic in
the structural dynamics. Dynamic analysis of portal-slewing cranes is essential from two main
aspects. The first main aspect is high payload of the crane. The second main aspect is a small
base of the portal in proportion to crane height. In portal-slewing cranes, there are influences
which are variable in time (e.g., motion of the crane and payload swing, etc.). Payload swing
contributes in a large extent to dynamic loading of cranes. The importance of the problem of
payload swing was considered and confirmed in (Lee, 2004; Jerman and Haribar, 2013). The
same problem is defined in standard F.E.M 1.001.
From the aspect of structural similarity of the portal cranes of type H and X, it is interesting

to analyse their dynamic behaviour in comparative terms. The problem of dynamic analysis
of the H portal crane was solved in Vasiljević et al. (2016). The subject of this paper was a
comparative dynamic analysis of the H and X portal-slewing cranes. It has been accepted that
the two portal cranes have the same type of general boom slewing that is, they have only different
types of portal construction (type H and type X).

This paper should contribute to the knowledge of the difference of dynamic behaviour of
the two portals of the H and X portal cranes excited by motion of the crane and the payload
swing. The modelling of the dynamical models of the two portal types is approached by dividing
the whole portal crane into two subsystems, i.e. the portal (H accordingly X) and the boom
(identical for both portal types). The interaction between the portal and the boom is simplified
by reducing the influence of payload and dead weight of the boom to corresponding points of the
portal. The identical equivalent three-dimensional dynamic model of the general slewing boom
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for both crane types was formed in the first step. Three-dimensional finite element models of
the H and X portals was formed in the second step. The both portals are modelled with three-
-dimensional linear beams. A FE technique for determining the dynamic response of structures
of gantry cranes was developed by Wu et al. (2000). As in reality three-dimensional linear
beams are systems with continually distributed masses, and as the three-dimensional model of
the portals (H and X) is complex, the continually distributed mass is replaced with a consistent
mass (Vasiljević et al., 2013). The consistent mass matrix of the system is formulated on the basis
of the same interpolation functions which are used for derivation of stiffness matrices. The three-
dimensional linear beam is modelled by means of a space beam element with two node points
and six unknowns in each node. In this paper, the formulated models include damping of the
portal structure. Including selected references on the crane modelling and dynamics (Gustafsson,
1996; Maczyński and Szczotka, 2002), which were considered in Vasiljević et al. (2016), in this
paper additional references on the effect of structure damping (Chopra, 2006; Spyrakos, 1994;
Bathe, 1996) and on the dynamic stability of cranes (Ito et al., 1985; Towarek, 1998; Ju et al.,
2006; Shaikh and Kumar, 2016) are considered.

Results of dynamic analysis for two types of portal structures are presented and compared.
Dynamic models of two portals of the H and X portal-slewing cranes are evaluated in terms
modal analysis of vibration and the dynamic response of the portals to excitation.

2. Kinematics of the portal cranes

This paper assumes that the both portal cranes (H-type and X-type), i.e. the base of the cranes,
can perform only rectilinear motion from point to point. A trapezoidal speed profile is most
frequently used for calculation of moving cranes mechanisms, v = linear, Fig. 1. This profile is
identical for both H and X portal cranes. Besides the speed profile, there are three more profiles:
triangular, stepped and notched. In this paper, it is adopted that during one cycle both portal
cranes (H and X) move along the track with the trapezoidal speed profile, because it represents
a stricter criterion for analysis compared to other types of profiles.

Fig. 1. Identical profiles of speed and acceleration for cranes type H and X

3. 3D dynamic model of the general boom

The identical general boom slewing is a constituent part of both types of portal-slewing cranes
(H and X). The subsystem of the boom consists of the portal of the boom and the rope system
of the boom. The boom is connected to the platform by joints.

In the system of both portal cranes, the general boom slewing is observed as an independent
subsystem which performs vibrations. An equivalent three-dimensional dynamic model of the
general boom slewing of the portal crane (Fig. 2) was formed in Vasiljević et al. (2016). An
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equivalent dynamic model is formed in such a way that it keeps the main dynamic characteristics
of the boom and that the defined problem could be mathematically solved.

Fig. 2. (a) 3D dynamic model of the general boom slewing (identical for cranes of type H and X),
(b) payload vibration in the longitudinal direction, (c) payload vibration in the lateral direction

This model was formed for the needs of determination of dynamic loads. From Fig. 2 it is
seen that the subsystem of the boom with a payload is represented with two lumped masses, two
lightweight bars and a circular disc. Discretization of the carrying structure of the boom with
the mass mb was performed to a lightweight bar with the length Lb and the reduced mass m1 on
the top. The reduced mass m1 can be determined according to the following relation m1 = (0.25-
0.33)mb. The rope system of the boom is represented by a non-elastic lightweight bar with the
length Lr and the mass of the payload m2. The slewing column is represented by a circular disc
with the axial moment of inertia J and the moment of rotation T . The distance between the
boom joint and the column axis is r.
For the formed equivalent three-dimensional dynamic model boom (Fig. 2), the Lagrange

equations of the second kind will be used for mathematical formulation (Vasiljević et al., 2016).
The dynamic differential equation of slewing of the column read

Jϕ̈(t) = T (3.1)

The dynamic differential equations of vibrations of the payload reads

Lrθ̈(t) + g sin θ(t) = −ẍ(t) cos θ(t)cosϕ

Lrψ̈(t) + g sinψ(t) = −ẍ(t) cosψ(t) sinϕ
(3.2)

where: θ – angle of payload vibration in the longitudinal direction (xy-plane), ψ – angle of
payload vibration in the lateral direction (zy-plane), ϕ – angle of boom slewing, x – rectilinear
moving of the whole crane (X-axis).
Differential equations (3.2) were solved analytically by using the Laplace transform method.

These equations were verified by using the program written in Mathematica
R○
. An expanded

setup process mathematical formulation was given in Vasiljević et al. (2016). The laws of payload
vibration in the longitudinal and lateral direction are

θ(t) = −
h

Lrω2

{

(1− cosωt)− [1− cosω(t− t2)]HeavisideTheta(t− t2)

− [1− cosω(t− t3)]HeavisideTheta(t− t3)

+ [1− cosω(t− t4)]HeavisideTheta(t− t4)
}

cosϕ

ψ(t) = −
h

Lrω2

{

(1− cosωt)− [1− cosω(t− t2)]HeavisideTheta(t− t2)

− [1− cosω(t− t3)]HeavisideTheta(t− t3)

+ [1− cosω(t− t4)]HeavisideTheta(t− t4)
}

sinϕ

(3.3)
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where: h – amplitude of input acceleration, ti – corresponding time impulses in the profiles of
speed and acceleration (Fig. 1), ω – natural frequency of payload vibration (ω2 = g/Lr).

For Eqs. (3.3), the corresponding comments are provided in Vasiljević et al. (2016).

4. Comparative 3D dynamic models of the H and X portals

4.1. Comparative description of the H and X portals

Both types of portal cranes (H and X) are divided into two subsystems (moving structure and
slewing boom). Taking into account that the boom rotates around its axis, it can be concluded
that the planar model is not sufficient for describing the dynamic behaviour of the considered
portal-slewing cranes. The three-dimensional dynamic models of the two portals, to which dy-
namic load is reduced, is formed in accordance with the 3D dynamic model of the boom.

The comparative discretized 3D models of the portals are shown in Fig. 3. The both types
of portals (H, X) are rigid three-dimensional frames. The base of the portals has identical
dimensions L × B. The main structural parts of both portals are legs, slanted columns, frame
(H or X) and circular ring. The legs of both portals are identical and stand at the same level.
The slanted columns are identical and they are connected to the legs as well as to the frame
(H or X) and the circular ring. The distance between the frames and the circular ring is Hs.

Fig. 3. Comparison of discretized 3D models of the portals: (a) type H, (b) type X

4.2. Comparative 3D FE models of the portals of H and X types

The interaction between the structure and the boom is simplified in such a way that the
influence of the payload and the dead weight of the boom are reduced to the points of the upper
and lower supports of the boom. A three-dimensional dynamic model of the H portal of the
portal-slewing crane for forced undamped vibrations was formed in Vasiljević et al. (2016). In
this paper, an advanced dynamic model of the H portal for forced damped vibrations including
damping of the portal structure is formed (Fig. 4a). Analogously, a 3D dynamic model of the
X portal has been given (Fig. 4b).
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Fig. 4. 3D FE models of the portals: (a) type H, (b) type X

The portal structure of the type H was discretized into 18 finite elements of the beam
type with 6 degrees of freedom in the node. In other words, the portal was discretized into
18 finite beam elements connected by nodes. The portal H (whole system) has 82 degrees of
freedom. The frame H was divided into 6 finite elements. The circular ring with diameter D
was divided into 4 finite elements. The legs and the slanted columns were modelled as 1 finite
element.

Analogically, the portal structure of the type X was discretized into 16 finite beam with
6 degrees of freedom in the node, i.e., the portal was discretized into 16 finite beam elements
connected by nodes. The portal X has 70 degrees of freedom. The frame X was divided into
4 finite elements. In the portal X, the circular ring, legs and slanted columns were divided into
the same number of finite elements, as in the portal H.

In both portals the finite elements have properties An, Ixn, Iyn, Izn (n = 1, . . . , 18 – type H;
n = 1, . . . , 16 – type X). The both FE models are rest on four supports (springs) with the
stiffness k. The main mechanical properties of all finite elements of the three-dimensional model
of the steel-made portal are the elastic modulus E, shear modulus G, mass density ρ and the
damping coefficient ξ. The models include damping within the portal structure in the range of
0.5-7% (Chopra, 2006). In the dynamic analysis with the application of the FEM, the maximum
magnitude of damping is 7% (Spyrakos, 1994).

The dynamic moments are reduced to couples of horizontal dynamic forces Px(t) and Pz(t)
in the nodes of finite elements of the upper beam and the central node of the lower beam (case 1:
frame – type H, case 2: frame – type X). The position of these forces relative to the longitudinal
direction (X-axis) is defined by the angle ϕ which represents the angle of platform slewing.

In the longitudinal and lateral direction, horizontal dynamic force components (Px(t),
4 · 0.25Px(t) and Pz(t), 4 · 0.25Pz(t)) make couples of forces which oppose dynamic moments
components of overturning (Mz(t) and Mx(t)) of the platform
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Px(t) =
Mz(t)

Hs
=
1

Hs

[

m1g(Lb cosα+ r) +m2(g + Lrθ̇
2 cos θ)(Lr sin θ + Lb cosα+ r)

+m2Lrθ̇
2 sin θ(Lb sinα− Lr cos θ) +m2Lrψ̇

2 cosψ(Lb cosα+ r)
]

Pz(t) =
Mx(t)

Hs
=
1

Hs

[

m2(g + Lrψ̇
2 cosψ)Lr sinψ +m2Lrψ̇

2 sinψ(Lb sinα− Lr cosψ)
]

(4.1)

The vertical static force Py1 of the reduced boom mass m1 and the vertical static force Py2
of the load mass m2 are reduced to the central node of the lower beam (frame – type H and
frame – type X). The total vertical static force Py which acts in the central node of the lower
support of the boom is equal to the sum of the two forces (Py1 and Py2)

PY = Py = Py1 + Py2 (4.2)

For testing dynamic stability of both portals to identical excitation, characteristic nodes of the
portal models are the nodes at the point of supports (springs).

4.3. Comparative of mathematical formulation

In accordance with the dynamical models of the two portals, the differential equation of
dynamic equilibrium, i.e. forced damped vibrations of the portals reads

MÜ+CU̇+KU = P(t) (4.3)

where: M – matrix of consistent masses of the system, C – matrix of damping, K – matrix
of stiffness, Ü – acceleration vector, U̇ – speed vector, U – displacement vector, and P(t) –
external force vector.
Natural frequencies of the system are obtained by solving the algebraic equation

det(K− ω2pM) = 0 (4.4)

The mass matrix of the whole systems, i.e. the portals of type H and X reads

M =

{

[M]82×82 type H

[M]70×70 type X
(4.5)

The stiffness matrix of the portals and springs is

K =

{

[K]82×82 + k16×16 type H

[K]70×70 + k16×16 type X
(4.6)

In order to execute Eqs. (4.6), the stiffness matrix [ks]16×16 is, by adding zero rows and zero
columns (Wu, 2004), extended to the matrix with dimensions 82× 82 – for type H and 70× 70
– for type X, except for 16 degrees of freedom of 4 nodes.
Structural damping of the portal is modelled by conversion to the equivalent viscous damping.

The damping matrix has been adopted according to the Rayleigh theory (Chopra, 2006)

Cp = αMp + βKp (4.7)

where α and β are damping factors. Details of determining the damping factors are given in
Chopra (2006), Bathe (1996). In this paper, the assumption is that the damping coefficients for
the control frequencies, ωp1 and ωp2, are the same (ξ = ξ1 = ξ2). The simplified form of the
equation for determining the damping factor is
{

α
β

}

=
2ξ

ωp1 + ωp2

{

ωp1ωp2
1

}

(4.8)
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The damping matrix of the portal structure, i.e. the overall system is

C =

{

[Cp]82×82 type H

[Cp]70×70 type X
(4.9)

The external force vector of the portal structure, i.e. the overall system and the springs is

P(t) =

{

{Pp(t)}82×1 type H

{Pp(t)}70×1 type X
(4.10)

The vectors of external dynamic forces P(t) can be expressed in the following forms:
— type H

P(t)T =



































{0, 0, 0, 0, 0, 0} i = 1, . . . , 4

{0, 0, 0, 0, 0, 0} i = 5, . . . , 8

{0.25PX (t), 0.25PZ (t), 0, 0, 0, 0} i = 9, . . . , 12

{−PX(t),−PZ(t), PY , 0, 0, 0} i = 13

{0, 0, 0, 0, 0, 0} i = 14, 15

(4.11)

— type X

P(t)T =























{0, 0, 0, 0, 0, 0} i = 1, . . . , 4

{0, 0, 0, 0, 0, 0} i = 5, . . . , 8

{0.25PX (t), 0.25PZ (t), 0, 0, 0, 0} i = 9, . . . , 12

{−PX(t),−PZ(t), PY , 0, 0, 0} i = 13

(4.12)

where

PX(t) = Px(t) cosϕ+ Pz(t) sinϕ PZ(t) = −Px(t) sinϕ+ Pz(t) cosϕ (4.13)

4.4. Solving the equation of dynamic equilibrium

As the equation of dynamic equilibrium (Eq. (4.3)) represents a differential equation of the
second order with variable coefficients, its solving is complex. That is the reason why a short
procedure of solving the equation of dynamic equilibrium is given here in 6 steps.

Step (i) – Determination of the matrices of stiffness K and inertia M of the two finite element
models of the portals (type H and type X) of the considered cranes.

Step (ii) – Determination of natural frequencies of the two FE models by using Eq. (4.4) and
then the first two lowest natural frequencies ωp1 and ωp2.

Step (iii) – Determination of the matrix of damping C of the two FE models.

Step (iv) – Determination of the external vectors of forces P(t) as a function of time t.

Step (v) – Division of the shared total time domain T into n steps in such a way to obtain the
corresponding time interval ∆t.

Step (vi) – Solving Eq. (4.3) for each time step n, where n takes magnitudes from 0 to p. A
special case of the Newmark method, “the method of average acceleration” is used.

5. Numerical example of comparative dynamic analysis

In this Section, a solution for portal cranes to apply the theoretical dynamic analysis presented
in Sections 2, 3 and 4 for checking its correctness and drawing the corresponding conclusions is
used. Numerous examples are carried out for the portal cranes of the type H and X with the
input data given in Tables 1 and 2.
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Table 1. Identical general data for portal cranes of the type H and X

Crane properties Value

Payload mQ [t] 10

Speed of crane vp [m/min] 30

Length of portal base L [m] 6

Width of portal base B [m] 6

Height of leg H [m] 6

Distance between supports and boom Hs [m] 3.675

Diameter of circular ring D [m] 4.243

Boom mass mb [kg] 9200

Boom length Lb [m] 30

Distance between boom joint and column r [m] 1

Modulus of elasticity E [N/mm2] 2.1 · 1011

Modulus of shear G [N/mm2] 0.8 · 1011

Mass density of material ρ [kg/m3] 7850

Stiffness of elastic supports k [N/m] 1 · 107

Coefficient of relative damping ξ [%] 0.5

Table 2. Comparative of dimensions of the cross-sections of the H and X portals

Cross-section
Type H n 1, . . . , 4 5, . . . , 8 9, . . . , 12 13, . . . , 16
Type X n 1, . . . , 4 5, . . . , 8 9, . . . , 12 13, . . . , 18

Hn [mm]
i 530 1030 524 530
j 1030 530 524 530

Hn1 [mm]
i 500 1000 500 500
j 1000 500 500 500

Bn [mm]
i 550 550 550 550
j 550 550 550 550

Bn1 [mm]
i 500 500 500 500
j 500 500 500 500

δ1 [mm]
i 10 10 12 10
j 10 10 12 10

δ2 [mm]
i 15 15 12 15
j 15 15 12 15

5.1. Excitation

The motion of both types of cranes along the tracks is described by the diagram of speed
(Fig. 5). The speed vp1 is the real nominal speed, whereas the speed vp2 is the extreme nominal
speed of the portal. The impact of the magnitudes of speed on the dynamic response of the
payload was determined. Figure 6 based on Eq. (3.3)1 presents the angle of payload vibration θ
in the longitudinal direction for two speeds of both portals. This vibration diagram shows that
the angle of payload vibration increases with the increase in the speed from real to extreme
values. The maximum angle of payload vibration for the speed vp1 is 0.0693 rad. The change
of the angle of payload vibration ψ in the lateral direction is completely the same. The change
of the dynamic force component in the longitudinal direction, on the basis of Eq. (4.1)1, is
presented in Fig. 7. The change of the dynamic force component in the lateral direction, on the
basis of Eq. (4.1)2, is presented in Fig. 8. Figures 5-8 are identical for both portal cranes.
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Fig. 5. Time diagram of the portal speed vp(t)

Fig. 6. Angle of payload vibration in the longitudinal direction for different speeds of crane motion

Fig. 7. Change of the dynamic force component in the longitudinal direction

5.2. Comparative modal analysis

The first main intention of this paper is comparison of modal parameters (eigenfrequencies
and vibration modes) between the two types of portal cranes (type H and X). Although both
portals have the same spread and height, there are differences in modal parameters. These
differences come from the difference in their frames at the medium level in the horizontal plane.
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Fig. 8. Change of the dynamic force component in the lateral direction

Table 3 presents a comparison of the magnitudes of the first six comparative frequencies and
periods of vibration of the two types of portals of the portal-slewing crane (Eq. (4.4)). Also, the
relative differences of these parameters are given.

Table 3. Comparison of modal parameters of vibration of the two portals

Portal Mode 1 2 3 4 5 6

Type H Natural frequency fH [Hz] 2.72 2.92 5.26 7.91 13.66 16.04

Type X Natural frequency fX [Hz] 2.87 2.89 4.92 7.92 15.31 15.37

Relative difference [%] −7.66 3.34 16.04 −0.88 −7.03 12.52

Based on Table 3, it is concluded that the first 6 frequencies are slightly different. For the
construction, the most dangerous are the first two or three major forms of vibration, since there
are the greatest amplitudes quickly leading to failure of the structure (Petković, 1996; Ju et al.,
2006). In this regard, when comparing portals of the type H and X, the accent is on the first
two modes of vibration.

As an imperative to carrying transport structures, building and mining machinery, small
mass, and slenderness it is common that the first lowest (basic) frequency is in the range of
[0.5-3.5] Hz (Petković, 1996). In this aspect, for both types of portals, the first frequency is in
the recommended range. The portal H has a 7.66% lower first vibration frequency than the
portal X, which means that the portal H is more elastic from the aspect of the first vibration
mode. The first vibration frequency of both portals is located in the defined range.

The portal H has a 3.44% higher second vibration frequency than the portal X. The first and
second mode shapes of vibration for both portals are shown Figs. 9 and 10. It can be seen that
the first mode of vibration is dominated by deformation of both considered types of portals. This
vibration mode is characterized by a horizontal shape of vibration. Also, the second vibration
mode has the same character.

Dynamic behaviour of the construction is evaluated by the first vibration mode. Stable
dynamic behaviour of a construction requires a high first vibration frequency. According to this
aspect, the portal H is characterized by unfavourble dynamic stability compared to the portal X.

5.3. Comparative dynamic displacements

The second main intention of the paper is to compare dynamic displacements of the two
types of portals. Equation of dynamic equilibrium (Eq. (4.3)) for investigating the dynamics
of the two portal cranes was solved numerically by using a direct integration method (step by
step) and by using a program written in Mathematica

R○
. This program was written based on
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Fig. 9. Comparison of the 1st mode shape for two portals: (a) type H, (b) type X

Fig. 10. Comparison of the 2nd mode shape for two portals: (a) type H, (b) type X
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the Newmark integration method (Bathe, 1996). The time interval of integration was chosen to
be ∆t = 0.01 s. Dynamic displacements for all degrees of freedom were obtained, but only the
most important ones for testing the dynamic stability of the two portal cranes are presented.

The dynamic responses of the portals H and X to identical excitation are, above all, con-
tained in the dynamic displacement of the four supports (springs) for different positions of the
boom relative to the direction of motion of the crane. Comparative analysis of dynamic displace-
ments of the four springs i.e. nodes (1 through 4) for different positions of the boom relative
to rectilinear motion of the portal ϕ = (0◦, 45◦, 90◦, 135◦, 180◦) established that the critical po-
sition of the boom is ϕ = 45◦ for both portals (type H and type X). For this position of the
boom, spring node 1 for both portals (H and X) has a positive displacement, which is bigger
than positive displacements of springs for all other positions of the boom. In other words, the
largest vertical displacement has the leg located on the opposite part of the portal structure
in both axes in relation to the boom slewing of 45◦ in relation to the rectilinear motion of the
crane.

A comparative change of dynamic displacements of the four springs i.e. nodes (1 through 4)
for the critical position of the boom relative to the rectilinear motion of the portal H (ϕ = 45◦)
is shown in Fig. 11. Analogically, a corresponding analysis for the portal X is shown in Fig. 12.

Fig. 11. Comparison of dynamic displacements of nodes 1 through 4 of the portal H

Fig. 12. Comparison of dynamic displacements of nodes 1 through 4 of the portal X
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Individual comparative changes of the dynamic displacements of node 1 for the defined
critical position of the boom (ϕ = 45◦) for two portals H and X are shown in Figs. 13 through 16.

Based on the analysis of the displacements of the elastic supports for the critical position
of the boom, Figs. 13 through 16, it is shown that only node 1 has a positive displacement
(Fig. 13). For the portal H, the maximum displacement of node 1 is 37.52mm. For the portal X,
the maximum displacement of node 1 is 37.69mm. The portal H has a 0.45% less dynamic
displacement than the portal X, which means that the portal X is has a unfavorable dynamic
stability for overturn compared to the portal H. In this case, lifting of the leg of both portal-
slewing cranes occurs in practice most often. In accordance with the parameters included in the
mathematical model of the considered portal, the expected magnitude of the maximum dynamic
displacement was obtained.

Fig. 13. Comparison of the dynamic displacement of node 1 for the two portals

Fig. 14. Comparison of the dynamic displacement of node 2 for the two portals

Namely, in support 1 of the portal structure there is a clearance in terms of the track. Due to
the clearance UY 1, the real value of pressure in support 1 is defined by the following expression
R1 = Rs1 − kUY 1, where: Rs1 is the pressure in support 1 when all supports lie in the tracks
and k is the equivalent rigidity of the portal structure and supporting ground. It is obvious that
the pressure force is decreased in support 1 of the portal structure.
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Fig. 15. Comparison of the dynamic displacement of node 3 for the two portals portals

Fig. 16. Comparison of the dynamic displacement of node 4 for the two portals

6. Conclusions

The conclusions of a comparative dynamic analysis of the two H and X portal cranes are:

• It is possible to recognize the structural behaviour during free undamped vibrations and
the dynamic response to identical excitations for the two types of portals.

• The first lowest (basic) vibration frequency of both portals is within the limits of
[0.5-3.5] Hz, so the condition for small mass, or slenderness is fulfilled.

• The portal H is slightly more elastic than the portal X, which means that it has a slightly
unfavorable dynamic stability as it has a lower first frequency of 7.66%.

• Substations are provided that enable predicting the behaviour of the two types of portals
due to the change of parameters (e.g., speed and acceleration of the crane, damping of the
portal structure, stiffness of vertical springs,...).

• The positions of supports or vertical springs represent the most relevantly identified ele-
ments of both portal cranes for analyzing their dynamic behaviour.

• It is possible to analyse the behaviour of springs of the two portals for the identical
excitation effect.

• The largest vertical displacement has a leg, i.e. a spring located on the opposite part of the
portal in both axes in relation to the 45◦ boom slewing in relation to rectilinear motion of
the crane on the rails.
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• Increasing structural damping in the FE models of both portals leads to a decrease in the
amplitudes of displacements.

• By comparing the displacements of the springs of the portals H and X, it is concluded that
they are very similar. The critical spring of the portal X has a higher vertical displacement
by 0.45% than in the portal H. In other words, the model H has a slightly higher dynamic
stability for overturn than the model X;

• This paper leaves room for an extended dynamic analysis of the H and X portal cranes by
advanced dynamic models, i.e. including more parameters.
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